
Journal of Statistical Physics, Vol. 74, Nos. 1/2, 1994 

Computer Simulation of Random Sequential 
Adsorption of Two Interacting Species on a Lattice 

Robert S. Sinkovits I and Ras B. Pandey L2 

Received June 24, 1993, final August 25, 1993 

A computer-simulation model is introduced to study the variation in the 
coverage and porosity in a binary system by random sequential adsorption on 
a periodic square lattice. We study the effects of the range of the repulsive 
interaction between unlike species and of the probability of deposition of each 
particle type. For all choices of the interaction range there is a minimum in the 
total coverage of the lattice which occurs for equal deposition probability of 
the two species. The saturation coverage decreases on increasing the range 
of the interaction. For proper choices of the parameters of the model, regimes 
exist in which either pores or particles of one type form an infinite percolating 
network. 
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M a n y  physical,  chemical ,  a n d  biological  processes involve  the adso rp t i on  
of objects  o n t o  a subs t ra te  wi thou t  subsequen t  diffusion or  desorp t ion ,  tl 3~ 
These p h e n o m e n a  have been s tudied us ing r a n d o m  sequent ia l  adso rp t ion  
(RSA),t4 13) an  irreversible process in which objects are adso rbed  one  at a 
t ime subject  to the c o n d i t i o n  that  they do no t  over lap  previously  deposi ted  
objects. RSA in one  d imens ion ,  also k n o w n  as the car  pa rk ing  p rob lem,  ~4~ 
has been used to mode l  the b i n d i n g  of l igands  on  po lymer  chains,  tl~ In  two 
d imens ions ,  RSA is related to the adso rp t i on  of small  molecules,  proteins ,  
and  po lymers  on  surface. 12"3~ O n e - d i m e n s i o n a l  RSA is well unde r s tood  and  
exact  results are avai lable  for some of the adso rp t i on  processes, while in 
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two dimensions the majority of studies are carried out via computer 
simulations. Of primary interest in these simulations is the coverage t3 ~31 of 
the surface as a function of time and its long-time limiting value, i.e., 
jamming coverage. The effect of the shape of the adsorbant particles on the 
jamming coverage has been studied extensively. For example, in the RSA 
of unoriented rectangles with aspect ratio ~, the jamming coverage has a 
maximum at ct ~ 2 and varies as ct-~ as ~ ~ or. ~7~ The saturated coverage 
of a lattice by adsorption of constrained random chains shows a power-law 
dependence on the length Lc of the chain a s  L~-~ (141 

The aim of our work is to extend the study of RSA to systems in 
which two interacting species are allowed to be adsorbed on the same 
surface. To simplify the simulations and to isolate the effects that are due to 
the interaction between different species, the particles are treated as point 
partiqles which are randomly deposited on the sites of a periodic square 
lattice. The deposited particle is chosen to be type A with probability PA 
and type B with the complementary probability I -  PA- A particle is suc- 
cessfully adsorbed on the surface if the site is both unoccupied and outside 
the range of interaction of sites occupied by particles of the other type. For 
example, if we consider the range of interaction to be limited to nearest- 
neighbor sites, a particle of type A can be adsorbed on an empty site only 
if none of the adjacent sites are occupied by particles of type B. Similarly, 
type B particles cannot be adsorbed on sites adjacent to those occupied by 
type A particles. The repulsive interaction between the two species makes 
the particles of types A and B immiscible. The surface created by adsorp- 
tion in this manner consists of isolated clusters of particles of each type 
separated by clusters of empty sites or voids. The surface is considered 
to be saturated when ts consecutive attempts to adsorb a particle are 
unsuccessful. In our simulations, ts is typically chosen to be of the order 
of magnitude of the number of lattice sites. The saturated coverage of the 
lattice is defined as ~c = NocjN, where Nocc is the number of sites occupied 
by particles of either type and N is the total number of sites. The 
porosity t~5~ of the surface is related to the coverage by ~ p =  1 - ~ c .  
Fractional coverages of the lattice by each particle type are defined as 
�9 ,.(A ) = Nor162 )/N and ~c(B) = Nocr where Nocr ) and Note(B) are 
the number of sites occupied by particles of types A and B, respectively. 

Simulations were carried out in which both the range of the repulsive 
interaction between unlike species and the deposition probability for 
particles of type A were varied. From these simulations it is possible to 
determine the total and fractional coverages of the lattice and properties of 
the connectivity of the clusters t~6~ as a function of these two variables. The 
interaction range is increased discretely by including additional shells of 
lattice sites in the repulsive neighborhood of a particle. For example, if we 
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consider a given site to be located at coordinates (0, 0), the first shell of 
neighbors includes the sites (1, 0), (0, 1), ( - 1 ,  0), and (0, - 1 ) ,  the second 
shell of neighbors includes the sites (1, 1 ), (1, - 1 ), ( - 1, - 1 ), and ( - 1, 1 ), 
etc. 

Typical snapshots  of the saturated surface are shown in Fig. 1. 
Figure la  corresponds to a surface grown with nearest-neighbor inter- 
actions and PA = 0.5, Fig. lb  to eighth-neighbor interactions with p.~ = 0.5, 

(a) (b) 

(c) 
Fig. 1. Snapshots of saturated surface obtained from the binary deposition model on a 
100 x 100 square lattice. Particles of type A, type B, and voids are represented by black, gray, 
and white squares, respectively. (a) pA=0.5 and nearest-neighbor interactions. (b, c) Inter- 
actions up to eighth neighbors and values for PA of 0.5 and 0.7, respectively. 
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and Fig. lc to eighth-neighbor interactions with PA =0.7. In Fig. la the 
distribution of cluster sizes for both types of particles appears to be rather 
wide, with clusters of each type interdispersed within each other. Pores, on 
the other hand, exhibit a narrow size distribution and are distributed 
homogeneously across the surface. Increasing the range of interaction to 
include eighth neighbors drastically alters the appearance of the surface. 
The clusters of each particle type are typically much larger than in the case 
where only nearest-neighbor interactions are included and exhibit a much 
larger range in size, with the smallest clusters consisting of single isolated 
particles. In addition, the voids can be seen to form an infinite percolating 
cluster, t~6) A detailed study of the cluster size distributions and the percola- 
tion thresholds is in progress, but it is believed that the pore percolation 
may belong to a different universality class than the standard percolation 
problem. The infinite percolating cluster is very ramified and it appears at 
pore densities considerably smaller than the percolation threshold for one 
species on a square lattice. The appearance of the surface again changes 
drastically from Fig. lb to Fig. lc as the type A deposition probability is 
increased from PA =0.5 to p~ =0.7. The type A particles now form an 
infinite percolating cluster. Identical behavior is observed for type B 
particles as PA is reduced below 0.5. All four percolation regimes, i.e., no 
percolation, particle A, particle B, and void percolations, have been 
observed for this system. The existence of a threshold interaction range has 
been shown for the void percolation, but more extensive studies are 
required to determine if this system possesses tricritical points between no 
percolation, pore percolation, and particle percolation. 

Figure 2 shows the variation of the total coverage with PA for various 
interaction ranges and Fig. 3 is the corresponding plot for the fractional 
coverages of the surface due to each particle type. The results are obtained 
for each case by averaging over 100 runs on a 100 x 100 lattice. Error 
estimates based on the standard deviations in the coverages indicate that 
the maximum uncertainty in the total coverage is less than 0.5 % and in the 
fractional coverages is less than 4.5 %. These results imply that the fluctua- 
tions in the coverages due to each particle type (small scale) are smoothed 
out in the total coverage (large scale). The uncertainties in the fractional 
coverages are largest at small values of the fractional coverages. Calcula- 
tions on lattices of size 200 x 200 show that for the interaction ranges 
considered our results remain essentially unchanged, i.e., finite-size effects 
are not present. The saturation coverage shows a minimum at PA =0.5 
for all interaction ranges and is symmetric about this minimum; 
~c(PA = 0.5 + x) = ~c(PA = 0.5 - x) with 0 ~< x-N< 0.5. Figure 3 shows that 
the fraction of sites occupied by A and B have a complementary 
dependence on PA as expected. The minimum value of the saturation 



Computer Simulation of RSA 461 

0\ J 
- 0 -  1st neighbors 

0.9 - ~ - ~ -  3rd neighbors ) ' ~  

0 . 8 -  

0 . 7 -  

0 . 6 -  

i 1 i i 

0.0 0.2 0.4 0.6 0.8 1,0 
PA 

Fig. 2. Variation of the total saturation coverage with PA for first-, third-, and 12th-neighbor 
interactions. The substrate size is 100 x I00, and 1013 independent runs were used to determine 
the average saturation coverage. 

coverage  is s h o w n  in Fig. 4 as a funct ion  of  the interact ion range. The  
coverage  of  the lattice general ly  decreases  as the interact ion range is 
increased,  but  the coverage  d o e s s h o w  smal l  n o n m o n o t o n i c  var iat ions  as 
part icular shells  o f  n e i g h b o r i n g  sites are added  to the d o m a i n  of  interact ing 
sites. W e  bel ieve  that the irregularities in the total  coverage  at PA = 0.5 are 
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Fig. 3. Fraction of sites occupied by particles A (solid lines) and B (broken lines) at the 
saturation coverage as a function of p,~ for first-, third-, and 12th-neighbor interactions. The 
statistics are the same as in Fig. 2. 
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Fig. 4. Minimum value of the saturation coverage versus the range of interaction. Data 
points correspond to pA=0.5. Solid line is the best-fit exponential function ~c= 
0.52 + 0.475 exp( - 1.02 lr). 

an artifact of the latt ice and should vanish in a cont inuum representa t ion 
of the model.  The total  coverage of the latt ice asymptot ica l ly  approaches  a 
value of approx imate ly  0.52 for large interact ion lengths. This result implies 
that  the increased distance between clusters of dissimilar  types for longer 
interact ion ranges is balanced by an increase in the cluster sizes. F o r  
adsorp t ion  on a latt ice with unit  spacing between sites, the total  coverage 
of the lattice as a function of the range of the interact ion is described by 
the exponent ia l  function ~c  = 0.52 + 0.475 exp( - 1.021r). 
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